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It is shown that the equilibrium shape of an incompressible dielectric fluid drop 
rotating with constant angular velocity in the presence of a uniform external 
electric field of appropriate magnitude along the axis of rotation is spherical. For 
an inviscid fluid drop, the stability of this spherical configuration to small 
deformations is investigated by means of Chandrasekhar’s virial method. We 
find that a rotating drop in the presence of an electric field parallel to the axis of 
rotation is, in some respects, more stable than when either only the electric field 
or only rotation is present. This is due to the fact that the application of an electric 
field parallel to the axis of a rotating drop, or of rotation parallel to an electric 
field in which a drop is immersed, shifts the instability mechanism to another 
normal mode. 

1. Introduction 
The equilibrium configuration and the stability conditions of a fluid drop have 

received considerable attention in the literature. Particular attention has been 
paid to a rotating drop and to  the mechanics of disintegration of a drop by elec- 
trostatic forces. Rayleigh (1882) showed that a conducting spherical drop of 
radius a carrying a charge Q becomes unstable when Q2 > 16na3T, where T is 
the surface tension. The case of an uncharged conducting fluid drop in an other- 
wise uniform external field was first investigated experimentally by Zeleny 
(1 91 7). The drop becomes elongated in the direction of the field, taking an approxi- 
mately spheroidal shape, and eventually, that is when the field is sufficiently 
strong, it bursts. Zeleny’s (1915) theoretical analysis, however, is incorrect, as 
was pointed out by Taylor (1964). Indeed, Taylor (1964) re-examined this prob- 
lem assuming that the drop is approximately spheroidal. In  this case the stress 
of the electric field cannot balance the stress due to surface tension everywhere 
on the spheroid. Taylor used an approximate equilibrium configuration by 
requiring these stresses and the constant hydrostatic pressure to balance only a t  
the equator and the poles of the spheroid. Recently Brazier-Smith (1971) showed 
that there are finite shape-preserving oscillations, obeying the Taylor approxi- 
mation of a spheroidal drop in an electric field. 

The problem of a dielectric fluid drop in an electric field was also considered 
by Garton & Krasucki (1964) and Rosenkilde (1969). Garton & Hrasucki assumed 
that the electric field in the drop is a constant and solved the exact equation for 
obtaining the boundary of the drop. Since, however, the drop cannot be exactly 
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spheroidal the assumption of a constant field in the interior of the drop involves 
an approximation. Rosenkilde also assumed that the drop in an electric field 
retains a spheroidal shape, and used Chandrasekhar’s virial method for deter- 
mining the equilibrium configuration and its stability to small oscillations. In  
these studies the fluid in which the drop is suspended is an insulator. When the 
fluid surrounding the drop is conducting there is an imbalance in the tangential 
component of the electric field stress over the drop surface and this generates a 
flow field (Taylor 1966; Torza, Cox & Mason 1971). 

The case of a rotating fluid drop has been considered by many authors, includ- 
ing Chandrasekhar (1965). Brazier-Smith, Jennings & Latham (1972) employed 
a rotating drop model in connexion with the coalescence of falling water drops. 
A rotating drop is oblate in the direction of rotation and for relatively low angular 
velocities it has the shape of an oblate spheroid of small eccentricity. For 
relatively large angular velocities the shape of the drop departs appreciably from 
that of a spheroid and eventually the drop becomes unstable. 

An account of the effects of electric fields on hydrodynamic stability is given in 
an interesting paper by Calvert & Melcher (1969), which contains many useful 
references to related work. Calvert & Melcher were interested in the application 
of electric fields to problems connected with the cryogenic management of fluids 
in weightless space conditions. They investigated theoretically and experimen- 
tally the stability of a circular cylindrical column of fluid having solid-body 
rotation about its axis, in the presence of an axial electric field which has a large 
radial gradient at  the interface. Their work showed that a sufficiently strong 
electric field makes the purely azimuthal waves completely stable. 

In  this paper we consider the problem of a rotating drop in the presence of an 
electric field parallel to the axis of rotation. In  order to simplify the analysis we 
assume that the fluid in which the drop is suspended is an inviscid insulator 
exerting a uniform constant pressure over the drop surface. We show that, when 
there is a suitable relationship between the angular velocity and the electric field, 
an incompressible drop retains a spherical shape, and all the boundary conditions 
are satisfied. It might be observed that, since an electric field makes the drop 
prolate and rotation makes it oblate, a suitable combination of angular velocity 
and electric field will be expected to leave the drop spherical. This argument, 
however, is not necessarily correct. For example, it is not correct for a compres- 
sible drop. In  the case of an incompressible drop, it is a happy coincidence that the 
normal stress (for a sphere) due 60 a uniform external field has the same angular 
dependence as the pressue due to solid-body rotation of the drop. Thus a suitable 
combination of these two factors leaves the drop spherical. The surface tension 
affects the stability of the drop, which we also investigate. 

2. The equilibrium configuration 
We consider an incompressible fluid drop of density p rotating with constant 

angular velocity !2 between parallel electrodes tihat generate an electric field F. 
We assume that the axis of rotation is parallel to  the undisturbed field F and 
that the drop retains a spherical shape of radius a. In  a spherical polar co-ordinate 
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system (r, 8, q5), with the origin a t  the centre of the drop and the axis 8 = 0 
along the axis of rotation, the electric field is given by 

where el and e2 are the permittivities of the external medium and the drop, 
respectively. When e2 = co we have the case of conducting drop. The electric 
field stress normal to the surface of the drop in the outward direction is 

1 9F2e, 
-(--e,P2++~€2FZ+€lPlr2+-€2FF,2_) = 
477 8n(2e1 + e2)2 

(c2 - el) [e2 - (e2 - el) sin2 191, 

(2) 
where the plus sign refers to the external field, the minus to the internal field and 
the suffix r to the radial component. The pressure p within the rotating drop is 
given by p = p, + ipQ2r2 sin2 8, 

where p ,  is a positive constant. 

(3) 

At the surface of the drop the normal stresses must balance, that is, 

9F2e, 2T 
p ,  + +pQ2a2 sin2 0 + (e2-e1) [ ~ ~ - ( e ~ - - ~ )  sin28] = -+p,, (4) 87r(2el + E ~ ) ~  U 

wherep, is the hydrostatic external pressure. If in (4) we equate to zero the coeffi- 
cient of sin2 8 we obtain 

pa2Q2 = - E , )  F2/4n(2e1 + €2)2, ( 5 )  

which is the condition that the drop remains spherical. When ( 5 )  is not quite 
satisfied the drop will become prolate or oblate. Since F elongates the drop in a 
direction parallel to itself and rotation compresses the drop along the axis of 
rotation, the drop will become prolate or oblate depending on whether the right- 
hand side of (5) is greater or smaller than its left-hand side. 

Sincep, must not be negative, (4) and (5) show that ifpl = 0 then 

T > 9ae,e2(~2 - €1) P2/16n(2~, + c ~ ) ~ .  (6) 

As was pointed out by Taylor (1964), there is no reason why p, should be zero, 
and the above inequality is an unnecessary restriction, thus we ignore it. Then 
(5) shows that for a given dielectric liquid drop and a given electric field there is 
always an angular velocity that will make the drop spherical irrespective of the 
surface tension. The surface tension affects the stability of the drop, which is 
discussed in the following section. 

3. The perturbation equations 
We are going to consider the stability of small oscillations of the system by 

means of the virial method developed by Chandrasekhar (see, for example, 
the various articles by Chandrasekhar and Lebovitz that appeared in the 
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Astrophysical Journal in the 1960's). It is thus convenient to introduce, in this 
section, Cartesian co-ordinates (xl, x2, x3), wherex, = r sin 8 cos $, x2 = r sinBsin$ 
and x, = r cos 8. We neglect viscosity and consider a Lagrangian perturbation 
of the steady state of the form 5(x) ent, where h is a characteristic value which 
is to be determined. 

We define 

v . = P&XjdV ( i  = 1 , 2 , 3 ) ,  (7) 
2 ;  3 s, 

where the integration is carried throughout the volume V of the drop, and Vi; 
is related to the variation of the moment of inertia tensor by 

In this work the summation convention for repeated indices does not apply except 
for the index E .  

Following Chandrasekhar we assume that 

t i  = ailxl, (9) 

where the ail are constants and therefore 

p.. = L7j-pu5a ... 

q l f % z + V 3 3  = 0. (10) 

2,3 15 C? 

Since for an incompressible fluid V .g = 0, we must have 

In a frame of reference rotating with the fluid angular velocity Q, the variation of 
the equilibrium virial equations of our problem to the first order in 5 is given by 

h2E;j - 2hCki1,V;j - Q2(Cj - Sii3V3j) = SBf j  + SGij + S#ij + 6ij6Il. (11)  

In  (1 I ) ,  Bij is the stress tensor due to the electric field. For an ellipsoid, and thus 
for a sphere, its variation when ti is given by (9) was calculated by Rosenkilde. 
Gij is the normal stress due to the surface tension and its variation was calculated 
by Chandrasekhar. 

n n 

the surface integral being taken over the surface of the drop. It can easily be 
shown that if pl is a constant, that is if we neglect the effect of the perturbation 
on the pressure exterior to the fluid drop, 

6Xii = 0 when 0 . g  = 0. 

On making use of (lo),  after some algebra, we find that the nine equations repre- 
sented by (9) are 

h2V,; 2 - 2 h Q q ;  2 = ( B  + 5C) (5; 2 + V,; 1), 
h2K2:1+ 2 h f i q ; l  = ( B  f 5c) (K; 2 + %;I), 

(12) 

(13)  
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where B = Q2- 4T/a3p and C = 9e1(e1 - e2)2 F2/140na2p(2el + c2)2. As in the case 
where F = 0, equations (13)-(20) separate into three non-combining groups, so 
that for each group only certain virials do not vanish. The normal modes associ- 
ated with these groups are known as the toroidal, pulsation and transverse-shear 
modes. 

T h e  toroidal modes 

For these modes 
51 = “ X l + P X Z ,  6 2  = px1-ax2, t 3  = 0 

and thus Vll+Yz2 = 0, K ; 2  = %;1, 

and all other virials vanish. From (16) it follows that for these modes SrI = 0. 
On using the above relationships and ( 5 ) ,  after a little algebra (12)-(15) give 

If we set A2 = - w2, so that w real corresponds to stable oscillations, we find that 

Thus these modes are stable for 56T > 9a3pQ2. Equation (21) shows that there 
is a neutral mode (w = 0 )  when T = 5a3pQ2, but since w is real in the vicinity of 
this point we do not have instability here. In  this case the deformation is time 
independent and the drop is infinitesimally deformed into an ellipsoid, that is, 
we have secular instability (Lebovitz 1961). 

When Q = 0, the solutions coalesce to the well-known frequency 

w,, = (8T/a3p)*. 

T h e  pulsation modes 
For these modes 

6 1 =  axl+Px2, 62 = -px1+ax2, t3 = - 2 m 3  

and thus q;l = 14;2 = -gv3;3, q;2 = -x;l ,  
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and all the other virials are zero. For this oscillation (12 )  and:( 13) become identical 

and give h2V,;, = 2hQV&. ( 2 3 )  

Equations (14) and (15 )  also become identical. By eliminating 6II between one 
of these and (16 )  and making use of ( 5 ) ,  after some algebra, we obtain 

q;l = - 2h12V,;2. 
24T 88el - 208e 
a3p 706, + 356, 

3h2+- + 

From (23 )  and (24 )  we obtain 

and therefore !22. 
8 T  4( 9261 - 1 7 ~ 2 )  

W 2  = -+ 
u3p 105(2e1 + e2) 

These modes are stable when the right-hand side of (26 )  is positive, that is they 
are stable for all !2 if ez < $el. 

From (23 )  and ( 2 4 )  it  follows that when 

a2 
3 T  - 1 1 € 1 +  266.2 _ -  - 
a3p 35(2e1 + e2) 

there is a neutral mode (w = 0). The occurrence of a neutral mode corresponds to 
the existence of a suitable deformation that leaves the equilibrium configuration 
invariant (Chandrasekhar 1965). 

The transverse-shear modes 
For these modes 

the virials V,; 3, V,; 3, V3; and V3; are proportional to  a, p ,  y and 6 respectively and 
all the other virials are zero. For a non-zero solution the eliminant of a, /3, y and 
6 from (17)-(20) must be zero. On making use of ( 5 ) ,  after some slight rearrange- 
ment, this eliminant becomes 

61 = m 3 ,  E2 = px3, 63  = yx1+ 6x2, 

[ A A-h2 0 0 1  

= - h2[h2(h2 - 2A)' + 4!2(h2 - A)2] 0 0 A A-h2  
A-A2 A -2hQ 0 

2 x 2  0 A-h2 A 

and therefore the equation for the characteristic frequencies of these modes is 

W 2 [ W 2 ( W 2 + 2 A ) 2 _ 4 ! 2 2 ( W 2 + A ) 2 ]  = 0. ( 2 7 )  

In  the above expressions 

For stability w must be real, that is, all the roots of 

f ( ~ )  = X' + 4 ( A  - Q') x2 + 4A(A - 2Q2)  X- 4A2Q2 = 0, (29 )  

where x = u2, must be positive. The condition that the roots of ( 2 9 )  are all real 
reduces to A [ ( 3 2 Q - 1 3 A ) 2 + 3 4 3 A 2 ]  < 0, 
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that is, A < 0. Also,f(O) < 0, and when A < 0 the turning points off(%) occur at 
x > 0. Thus when A < 0 the real roots of (29) are all real and positive. 

From (19) and (20) [replacing h by dldt] it is easy to see that, when A = 0, 
V,; and V3; are of the form a,t + a2 and thus A = 0 gives an unstable oscillation. 

4. Discussion 
From ( 2 2 ) ,  (26), (28) and the fact that the transverse-shear mode is unstable 

when A 2 0, i t  follows tha6 the most unstable mode is the transverse-shear mode. 
In the absence of rotation the equilibrium configuration is approximately spher- 
oidal and instability sets in through the pulsation mode (Rosenkilde 1969). In  
the present case instability occurs when 

(30) 
81 (4€+ 1) ( 8 -  1)2 

Q2 = %F2, 
4T' 9 4e + 1 
a3p 35 E + 2  140n-a2p(e + 2)3 
_ -  - -- 

where E = e2/e1. For a given el the coefficient of P2 in (30) has a maximum at 
e = and a minimum at e = 1. From e = I it increases monotonically with e to 
its greatest value, at E = co, corresponding to a conducting drop. Therefore the 
minimum value of F for instability corresponds to e = 00 and is given by 

(31) F(ae,/T) B = 8(35n)3 = 2.330. 

In the absence of rotation the approximately spheroidal conducting drop 
becomes unstable for smaller values of the parameter F(ae,/T)g, where a is the 
radius of the original spherical drop. Taylor's (1964) approximation shows that 
the minimum critical value of this parameter, corresponding to E = 00, is 1.625. 
For a spheroidal conductor the virial method (Rosenkilde 1969) shows that only 
the pulsation mode can be unstable and the minimum critical value of this 
parameter is 1.603. Our equation (31) shows that an appropriate rotation in- 
creases the minimum critical value of this parameter. 

Our results refer to the special case of a spherical drop but have a more 
general interpretation. Since here instability occurs through the transverse-shear 
mode, and in the absence of rotation through the pulsation mode, it is obvious 
that rotation transfers the instability mechanism from one mode to another. Thus 
if, in the case of a stationary drop elongated by an electric field, immediately 
before the critical value of Fa$e*/T3 is reached we apply a rotation the drop will 
become less prolate and thus be able to sustain the stress due to a larger F. 
Another mode may approach a little nearer its instability limit. Thus if we main- 
tain the approximate equilibrium shape of the drop by increasing F and L? it  is 
likely, as in the present case, that we shall excite the instability of another mode. 
Rosenkilde (1969), for example, showed that for the approximate equilibrium 
configuration he considered, the transverse-shear and toroidal modes are com- 
pletely stable. The pulsation mode becomes also completely stable if e < 20.801. 
In  the spherical configuration considered here [see equation (26)], owing to rota- 
tion, this mode becomes stable for a smaller E .  It is also obvious that for a given 
E $. 1 we can find an Q and an P that will make the transverse-shear and the 
toroidal modes unstable. The toroidal mode is the mode which becomes unstable, 
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when F = 0. Obviously, in the case of a spherical drop the electric field cannot 
stabilize this mode. 

From the data supplied by Chandrasekhar we find that, when F = 0, the toroi- 
dal mode becomes unstable when 

where a, represents the radius of the undisturbed drop. It is obvious that the 
above argument for the transfer of instability from one mode to another will also 
apply as regards the effect of the electric field on the rotating drop. One would 
therefore expect a rotating drop, in the presence of a suitable electric field, to 
sustain a higher i2 before the occurrence of instability. This is, indeed, the case in 
the present example, though here we have a fixed relationship, namely equation 
(5)) between Q and P. From (30) it is easy to see that in the present case the mini- 
mum critical value of C, corresponding to E = CO, is 

C = pQ2a3/8T = 3 = 0.486. (33) 

As E decreases from infinity to: the minimum value of C, for producing instability, 
increases. At E = :instability sets in either through the transverse-shear mode or 
[see equation ( 2 2 ) ]  through the toroidal mode. For E < Q instability occurs, as in 
the case P = 0,  through the toroidal mode but the critical value of X is i. 

The problem described here is an idealized one and the precise occurrence of 
the instabilities predicted by the theory can only be achieved in the conditions 
of zero gravity mentioned by Calvert & Melcher. If a rotating drop is suspended 
under gravity in a nearly inviscid fluid of the same density, in the presence of a 
suitable electric field, it might possibly achieve a very nearly spherical configura- 
tion. The stability of the configuration, however, will be affected by the influence 
of the perturbations on the fluid surrounding the drop and cannot be in quantita- 
tive agreement with the theory. We think, however, that owing to the fact that 
rotation transfers the instability mechanism from one mode to another, a 
conducting drop in the presence of an electric field will be more stable when it is 
suitably rotating. This could be tested by modifying some experimental arrange- 
ment so that a drop subjected to a d.c. field is given some rotation. 
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